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Time slice is a

range of sampling Should data for given

PRSRSp— COC be divided into
: multiple time slices?

dates/events

Data limited to 4-5 : . ‘ :
most recentyears |............i....._.....p  Time Slice
of sampling : Analysis

Goals: any time slice

' i must be 1) long

Allow maximum of 2-3 : ; enough to nearly

time slices; begin . d match baseline spatial

analysis with most R intensity and spread;
recent 2) short enough to only

capture 'snapshot' of
Initialize tentative time

_ _ plume
slice durationtot=6
months

dulr::t(ict::lﬁemﬂf: to Compute spatial Lengthen time
i g intensity & spread of [« slice duration by 3
potential time slice tentative time slice months

Enough time slices
created or limits of data

historical range
reached?

Are spread and
intensity similar to
baseline?

Repeat time slice
| analysis for other
COCs

Fix each time slice

as maximum date
range computed G

across COCs




Call up site boundary

information (including

depth if available for
3D analysis)

Estimation
S Mesh

Determine array
of locations at

which spatial
estimates are
made

Determine smallest
rectangular prism
enclosing site

Mesh created to 1) assess
balance between fineness of
mesh & user-allotted computer
processor time; 2) ensure
mesh nodes reside within
user-supplied site boundaries

\/—

Calculate number of

Estimate processing
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Depth can be
computed from
lowest well screen
in data

Call up
surface
elevation data

Pick tight mesh spacing
across enclosing
surface rectangle &
large spatial bandwidth

Use local regression

nodes possible under
processor constraint

time used per mesh |«
node estimated

Compute estimation mesh
C?" up.Liser- spacing (including pixel or
supplied maximum
rzgziggﬁli;e prism based on number of
P possible nodes
Set final estimation mesh as
coordinates of nodes residing <
within site boundaries on all

sides

(LWQR) to estimate
entire surface elevation

Set estimated elevation
surface as upper site

voxel size) for enclosing [——® boundary; calculated or user-

supplied depth as lower site
boundary

Determine which nodes of
tentative estimation mesh lie
between upper and lower
boundaries and within user-
supplied X-Y planar boundaries




Provides more
accurate estimate of
site-wide concentration
distribution

—

Treat all NDs at
specific reporting limit

as tied values when
ranking

Check for any
mean trends or

change in variance
levels with direction

. v
"~ 3-Plot panel of
uniform scores

graphed vs. 1) .
easting, 2) northing, J
& 3) depth

Look for bi-directional
trends in local means

and/or variances

e »

\

--————————

/" Color-coded
areal map of
local means /

Declustered <

Adjust univariate
CDF of given COC

for spatial clustering

CDF

o

Rank combined set of
COC measurements
(across time slices, if

any)

Divide ranks by (n+1) &
average results by
sampling location to
create uniform scores

Spatial
Covariance
Model

Check for
stationarity

Declustered CDF

needed to produce

local, mesh node-
specific estimates of
CCDF

Note: only 1
uniform score

per location

Compute local means &
variances of uniform scores
over superimposed 100-cell

grid

v

" variance over area of

Stationary data have
roughly constant mean &

interest; no observable
trends

Stationary data often fit
best with spherical,
exponential, or gaussian
models; non-stationary data
often require power model
or more sophisticated
modeling

—

Color-coded

local variances /

\

areal map of |

|

20



O

Compute list of pre-specified
percentiles of observed
distribution of pair distances;
use these percentiles as
omnidirectional lags for use
in variogram estimation

Compute empirical

/ Plotofempirical | correlogram of uniform
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Tentative

Model Choice

Compute set of observed
absolute differences in
location (i.e., distance) using
all possible pairs of distinct
measurements

T

scores for each lag
distance

*

{ correlogram by
\ lag distance /

Unit-less measure of
spatial correlation that

varies with lag distance

Plot of tentative \
selected model
overlaying
empirical
correlogram

y

Restrict fitting to
standard geostatistical
models: spherical,
gaussian, exponential,
power

to empirical
correlogram

Fit model variogram

Allow nugget term
&upto2

structures from the
standard models
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Compute orthonormal residuals

Spatial of difference between observed
@—P Covariance = —®| uniform scores and kriged
Diagnostics estimates at same locations
using the tentative model

)

Assess adequacy of
spatial covariance

Uncorrelated residuals
will have 'flat' or nugget
variogram; correlated
residuals will have
additional trend or

y

Y

model; refine if
necessary

Test orthonormal
residuals for zero
mean & unit variance

/' Plot of empirical \
variogram of '

: orthonormal J*
residuals

Check orthonormal
residuals for serial
correlation

cR = stabilized
geometric mean of
the squared
orthonormal
residuals

Any diagnostic
tests fail?

Check orthonormal
residuals for normality via
Filliben's probability plot
correlation test

Probabmty plot

of orthonormal
\ residuals J

Select another
tentative model

Compute cR
residual criterion

Good measure
of model
adequacy

v

Tweak each model
parameter along
increasing and decreasing
steps; compute revised cR
criterion at each step

Select covariance
model that minimizes
cR criterion

4 Table of final

Vodel parameters /J

\

g Plot of final
" model overlaying

empirical ]
correlogram
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Declustering
Weights

!

Compute mean of
uniform scores

Call up final
covariance
model

Higher variances
represent locations with
minimal spatial clustering;
lower variances
correspond to greater
spatial clustering

s

Weighted CDF
properly accounts for

spatial clustering

Includes data
from all time

slices

Use simple kriging variances
(one per known location)
derived from cross-
validation exercise as
declustering weights

Assign each location-
specific declustering
weight to every observed
measurement from that
location

Using the declustering
weights, form weighted
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Set up simple kriging with
covariance model and
uniform score mean at

known sampling locations

-

Perform simple kriging at
each known location,
temporarily excluding

observed uniform score

at that location

O
"

"
.
"

This procedure known
as leave-one-out

cross-validation

CDF of observed
concentration values

v

Density plot of

. 7

univariate }

declustered CDF
A\ 4




Higher bandwidths
= more smoothing
of estimated
surface; lower
bandwidths = less
smoothing

Bandwidth

Spatial

l

Run 'pre-flight' check of local
regression (LWQR) fits at
several possible bandwidths for
any given COC

Initialize low
tentative bandwidth
(say 5-10%)

Y

Call up uniform
scores for that

cocC
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With LWQR, no need to
temporarily remove the
observed value at the
known location, unlike
cross-validation

Use LWQR to fit an
estimated uniform score at
each known location,
using the chosen
bandwidth

Increment

—

Bandwidth = fraction of
samples included in local

neighborhood of any fitting
pt (i.e., mesh node)

Typical bandwidths:
20-60% for 2D
analyis, 10-40% for
3D analysis

bandwidth

Compute residuals
between estimated
and known uniform
scores

All bandwidths
attempted?




